PG AND RESEARCH DEPARTMENT OF CHEMISTRY

POOMPUHAR COLLEGE (AUTONOMOUS)

MELAIYUR, 609107.

(Affiliated to Annamalai University)

M.Sc. Chemistry

CHOICE BASED CREDIT SYSTEM SYLLABUS 2023 – 2024 ONWARDS

PG AND RESEARCH DEPARTMENT OF CHEMISTRY POOMPUHAR COLLEGE (AUTONOMOUS) MELAIYUR, 609107. (Affiliated to Annamalai University) M.Sc. Chemistry

Programme Structure and Scheme of Examination (under CBCS)

(Applicable to the candidates admitted from the academic year 2023 -2024 onwards)

		Credit	Hours/ Week	Maximum Marks		
Part	Study Components & Course Title			CIA	ESE	Total
	SEMESTER – I					
	Core - I: Organic Reaction Mechanism-I	5	7	25	75	100
	Core - II: Structure and Bonding in Inorganic Compounds and Nuclear Chemistry	5	7	25	75	100
	Core - III: Organic Chemistry Practical	4	6	25	75	100
	Elective – I (Discipline centric)	3	5	25	75	100
Part A	Pharmaceutical Chemistry					
	Nanomaterials and Nanotechnology					
	Elective-II (Generic centric)	3	5	25	75	100
	Electrochemistry					
	Molecular Spectroscopy					
	Total	20	30			500
	SEMESTER – II					
	Core - IV: Organic Reaction Mechanism–II	5	6	25	75	100
	Core - V: Physical Chemistry–I	5	6	25	75	100
	Core - VI: Inorganic Chemistry Practical	4	6	25	75	100
	Elective – III (Discipline centric)	3	4	25	75	100
Part A	Medicinal Chemistry					
	Green Chemistry					
	Elective – IV (Generic centric)	3	4	25	75	100
	Bio Inorganic Chemistry					
	Material Science					
Part B	Skill Enhancement Course (SEC-I): Industrial Chemistry and Computational Software in Chemistry	2	4	25	75	100
	Total	22	30			600

]	Core	-I		Credit	5	
	I Year		ORGANIC REACTION MECHANISM - I	Hours/	7	
	I Seme	ster		Week		
Objectiv the cour			 To understand the feasibility and the organic reactions. To comprehend the techniques in the d mechanisms. To understand the concept of stered organic compounds. To correlate and appreciate the diffe various types of organic reaction mechan To design feasible synthetic routes for compounds. 	eterminati ochemistry rences in iisms.	ion of rea y involve volved in	nction ed in n the
Course Outline		Rea The post proc trap stere mec Lind UN Aro com and halc nitro Hale Frie elec evic UN Aro mec and Buc Smi Alip carb Swa UN Intro alter diss pros grou Cran cycl Opt moc	T-I: Methods of Determination of Reaction ction intermediates, The transition state, Reaction reaction intermediates, The transition state, Reaction ulate. Methods of determining mechanism fuct analysis, determination of intermediate ping. Cross-over experiments, isotopic lab eco chemical evidences. Kinetic methods hanism.Effect of structure on reactivity: Ha ear free energy relationship, substituent and no IT-II: Aromatic and Aliphatic El maticity: Aromaticity in benzenoid, no pounds and annulenes. Aromatic electrophil reactivity of di- and polysubstituted obenzene. Reactions involving nitrogen osation and diazonium coupling; Sulphur of ogen electrophiles: chlorination and bromin del-Crafts alkylation, acylation and ar trophilic substitution Mechanisms: SE2 and ences. IT-III: Aromatic and Aliphatic Nucleophil matic nucleophilic substitution: Mechanisms hanisms - Evidences - Reactivity, Effect of attackingnucleophile. Reactions: Oxygen herer and Rosenmund reactions, von Richt les rearrangements. S _N 1, ion pair, S _N 2 mo thatic nucleophilic substitutions at an allylic on and vinyl carbon.S _N 1, S _N 2, and S _N 1 r in-Scott, Grunwald-Winstein relationship - IT-IV:Stereochemistry-I: oduction to molecular symmetry and chira- mating axis of symmetry. Optical isomeris ymmetric molecules with C, N, S based of tereoisomerism, prochirality, enantiotopic ups, faces, axial and planar chirality, chira n's and Prelog's rules. Configurations of a ooctene, Cycloalkanes. shift reagents and ical purity, criteria for optical purity: lifications, asymmetric synthesis. Stereose hesis. IT-V: Stereochemistry-II:	action coo of react n: non-ki es-isolatio elling, iso s - relation mett an reaction co ectrophilion-benzen lic substite phenol, methanism electrophi ation; Car ylation r l SEi, SE1 lic Substite s - S _N Ar, for structur and Sulp fer, Somm echanism c carbon, mechanism c carbon c carbon c carbon c carbon c carbon c carbon c carbon c c c c c c c c c c c c c c c c c c c	rdinate di ions: Ha netic me n, detection otope effection of radiated on of radiated on of radiated onstants. c Subs oid, heter ution: Or nitrobenze philes: mi les: sulphiles: mi mi les: sulphiles: mi les: sulphiles: mi mi les: sulphiles: mi les: sulphiles: sulphiles: sulphiles: sulphiles: sulph	thods - ion, and ects and ate and uations. titution: erocyclic ientation ene and nitration, nonation; rophiles: Aliphatic nism and Benzyne g group ophiles, user and idences. trigonal idences, niles. center, tric and icityand atoms, I shape. phenyls, eagents. racemic

	Conformation and reactivity of acyclic systems, intramolecular
	rearrangements, neighbouring group participation, chemical consequence of conformational equilibrium - Curtin-Hammett Principle.Stability of five and six-membered rings: mono-, di- and poly substituted cyclohexanes, conformation and reactivity in cyclohexane systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins and Brett's rule.Optical
	rotation and optical rotatory dispersion, conformational asymmetry, ORD curves, octant rule, configuration and conformation, Cotton effect, axial haloketone rule and determination of configuration.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
question paper) Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 J. March and M. Smith, Advanced Organic Chemistry, 5th edition, John-Wiley and Sons.2001. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. P.S.Kalsi, Stereochemistry of carbon compounds, 8th edition, New Age International Publishers, 2015. P. Y. Bruice, Organic Chemistry, 7th edn, Prentice Hall, 2013. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2nd edition, Oxford University Press, 2014.
Reference Books	 F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part- A and B, 5th edition, Kluwer Academic / Plenum Publishers, 2007. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw Hill, 2000. L. Finar, Organic chemistry, Vol-1 & 2, 6th edition, Pearson Education Asia, 2004.
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	<u>chemistry/organic</u>
source	2. <u>https://www.organic-chemistry.org/</u>
Course Learnin	g Outcomes (for Mapping with POs and PSOs)
	able the basic principles of organic chemistry. rstand the formation and detection of reaction intermediates of organic

reactions.

CLO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CLO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CLO5:To design and synthesize new organic compounds by correlating the

stereochemistryof organic compounds.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO 1	S	S	S	S	Μ	S	S	S	S	М		
CO 2	М	S	S	S	S	Μ	S	S	S	S		
CO 3	S	S	Μ	S	S	S	S	Μ	S	S		
CO 4	Μ	S	S	S	S	Μ	S	S	S	S		
CO 5	М	S	М	S	S	Μ	S	Μ	S	S		
Strong	Strong - 3 Medium-2 Low-1											

CO-PO Mapping (Course Articulation Matrix)

Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Core-II I Year

I Semester

23AU:P01M2

STRUCTURE AND BONDING IN INORGANIC COMPOUNDS AND NUCLEAR CHEMISTRY

Objectives of the	• To determine the structural properties of main group compounds
course	and clusters.
	• To gain fundamental knowledge on the structural aspects of
	ionic crystals.
	• To familiarize various diffraction and microscopic techniques.
	• To study the effect of point defects and line defects in ionic
	crystals.
	• To evaluate the structural aspects of solids.
	• To study about stellar energy, nuclear reactions etc and to equip
	the students for their future career in nuclear industry.
Course Outline	UNIT-I: Structure of main group compounds and clusters:
	VB theory: Structure of silicates - applications of Paulings rule of
	electrovalence - isomorphous replacements in silicates - ortho, meta
	and pyro silicates - one dimensional, two dimensional and three-
	dimensional silicates. Structure of silicones, Structural and bonding
	features of B-N, S-N and P-N compounds; Poly acids – types, examples
	and structures; Borane cluster: Structural features of closo, nido,
	arachano and klado; carboranes, hetero and metalloboranes; Wade's
	rule to predict the structure of borane cluster; main group clusters –zintl
	ions and mno rule.
	UNIT-II: Solid state chemistry:
	Ionic crystals: Packing of ions in simple, hexagonal and cubic close
	packing, voids in crystal lattice, Radius ratio, Crystal systems and
	Bravis lattices, Solid state energetics: Lattice energy - Born-Lande
	equation - Kapustinski equation, Madelung constant.
	Structural features of the crystal systems: Rock salt, zinc blende &
	wurtzite, fluorite and anti-fluorite, rutile and anatase, cadmium iodide
	and nickel arsenide; Spinels -normal and inverse types and perovskite structures.
	UNIT-III: Techniques in solid state chemistry:
	X-ray diffraction technique: Bragg's law, Powder diffraction method –
	Principle and Instrumentation; Interpretation of XRD data – JCPDS
	files, Phase purity, Scherrer formula, lattice constants calculation;
	Systematic absence of reflections; Electron diffraction technique -
	principle, instrumentation and application. Electron microscopy -
	difference between optical and electron microscopy, theory, principle,
	instrumentation, sampling methods and applications of SEM and TEM.
	UNIT-IV: Band theory and defects in solids
	Band theory – features and its application of conductors, insulators and
	semiconductors, Intrinsic and extrinsic semiconductors; Defects in
	crystals – point defects (Schottky, Frenkel, metal excess and metal
	deficient) and their effect on the electrical and optical property, laser
	and phosphors; Linear defects and its effects due to dislocations.
	UNIT– V:Nuclear Chemistry

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	 Nuclear properties: Nuclear spin and moments, origin of nuclear forces, Modes of radioactive decay: Orbital electron capture, nuclear isomerism, internal conversion. Nuclear reactions: Types, cross section, compound nucles theory, high energy nuclear, direct nuclear, photonuclear and thermonuclear reactions. Stellar energy: synthesis of elements, hydrogen burning, carbon burning Particle accelerators: Linear accelerators, cyclotron and synchrotron. Radio analytical methods: Isotope dilution analysis, radiometric titrations, Neutron activation analysis. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 A R West, Solid state Chemistry and its applications, 2ndEdition (Students Edition), John Wiley & Sons Ltd., 2014. A K Bhagi and G R Chatwal, A textbook of inorganic polymers, Himalaya Publishing House, 2001. L Smart, E Moore, Solid State Chemistry – An Introduction, 4th Edition, CRC Press, 2012. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders company: Philadelphia, 1977. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry;
	4th ed.; Harper and Row: NewYork, 1983.
Reference Books	 D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and Models in Inorganic Chemistry, 3rd Ed, 1994. R J D Tilley, Understanding Solids - The Science of Materials, 2nd edition, Wiley Publication, 2013. C N R Rao and J Gopalakrishnan, New Directions in Solid State Chemistry, 2nd Edition, Cambridge University Press, 199. T. Moeller, Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic Chemistry; 3rd ed.; Oxford University Press: London, 2001. Arnikar, H. J. (2005). <i>Essentials of nuclear chemistry</i>. New Age International (P) Ltd. Frielander, G., Kennedy, J. W., & Miller, J. M. (1981). <i>Nuclear and Radiochemistry</i>.John Wiley and Sons.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-
e-learning source	fall-2018/video_galleries/lecture-videos/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5: To understand the principles of diffraction techniques and microscopic techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	М	S	S	S	S	М	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	М	S	М	S	S	М	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

	Core-III		Credit	4					
	I Year	ORGANIC CHEMISTRY PRACTICAL	Hours/Week	6					
	I Semester								
					• •				
Objectiv course	ves of the	• To understand the concept of sepa		tive anal	ysis and				
course		preparation of organiccompounds							
		• To develop analytical skill in the	e		reagents				
		for separation of binary and ternar							
		• To analyze the separated organic derivative them suitably.	components s	ystematic	ally and				
		• To construct suitable experim		for the	organic				
		preparations involving two stages.							
		• To experiment different purificat	tion and dryin	ig techni	ques for				
C	041	the compound processing.							
Course	Jutline	UNIT-I: Separation and analysis: Two component mixtures							
		UNIT-II: Estimations:							
		a) Estimation of Phenol (brominati	on)						
		b) Estimation of Aniline (brominat	/						
		c) Estimation of Ethyl methyl keto	ne (iodimetry)						
		d) Estimation of Glucose (redox)							
		e) Estimation of Ascorbic acid (iod							
		f) Estimation of Aromatic nitro gro	1 \	n)					
		g) Estimation of Glycine (acidimeth) Estimation of Formalin (iodimet	• /						
		i) Estimation of Acetyl group in es	• /	rv)					
		j) Estimation of Hydroxyl group (acetylation)							
		k) Estimation of Amino group (acetylation)							
		UNIT-III: Two stage preparations:	•						
		a) <i>p</i> -Bromoacetanilide from aniline							
		b) <i>p</i> -Nitroaniline from acetanilide							
		c) 1,3,5-Tribromobenzene from aniline							
		d) Acetyl salicyclic acid from methyl salicylatee) Benzilic acid from benzoin							
		f) <i>m</i>-Nitroaniline from nitrobenzene							
		g) <i>m</i> -Nitrobenzoic acid from methyl							
Extended	h	Questions related to the above topics, from		netitive					
Professio		examinations UPSC / TRB / NET/ UGC-	CSIR / GATE	/TNPSC	others				
Compon	ent (is a	to be solved							
part of ir		(To be discussed during the Tutorial hour	s)						
compone	•								
	e included								
in the ex examination									
question									
Skills ac		Knowledge, Problem solving, Analytical	ability, Profes	sional					
from this	1	Competency, Professional Communication	-		lls.				
Recomn	nended	1. N.S.Gnanaprakasam andG.Ramamu							
Text		Manual, S.V.Printers, 2007.			-				
		2. Raj.K.Bansal, Laboratory Manual of		mistry, N	lew Age				
		International Publishers, 4 th edition, 20			1 1				
		3. A.I.Vogel, A.R.Tatchell, B.S.F	-	Hannafor					
		P.W.G.SmithVogel's Textbook of	rractical Org	ganic Ch	iemistry,				

	Prentice Hall, 5 th edition, 1989.
Reference Books	1.F.G. Mann and B.C. Saunders, Practical Organic Chemistry, 4th edn,
	Pearson Education India, 2009.
	2. K. Bansal Raj, Laboratory Manual of Organic Chemistry, New Age
	International, 2009.
	3. V. Venkateswaran, R. Veeraswamy and A. R. Kulandaivelu, Basic
	Principles of Practical Chemistry, Sultan Chand & Sons, 2004.
	4. V.K. Ahluwalia, and R. Aggarwal, Comprehensive Practical Organic
	Chemistry, Universities Press, 2004.
	5. R.G. Engel, D.L. Pavia, G.M. Lampman and G.S. Kriz, A Microscale
	approach to Organic Laboratory, 5th edition, Paperback – International
	Edition, 2012.
	6. P.B. Cranwell, L.M. Harwood and C.J. Moody, <i>Experimental Organic</i>
	Chemistry, 3rd edn, Wiley-Blackwell, 2017.
	7. J. Leonard, B. Lygo and G. Procter, Advanced Practical Organic
	Chemistry, 3rd edn, CRC Press, 2013.
	8. Moore, Dalrympk and Rodig, Experimental methods in organic
	chemistry, 3rd edition, Saunders College publishing, The Oxford Press,
	1982.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source	chemistry-fall-2018/video_galleries/lecture-videos/
Course Learning C	Dutcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

CO2: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by various chemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5:To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

	CO-I O Mapping (Course Ai ticulation Matrix)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
CO 1	S	S	S	S	Μ	S	S	S	S	Μ			
CO 2	Μ	S	S	S	S	Μ	S	S	S	S			
CO 3	S	S	Μ	S	S	S	S	Μ	S	S			
CO 4	Μ	S	S	S	S	Μ	S	S	S	S			
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S			

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low	
Level of Correlation between PSO's and Co	O'

Level of G	Correlatio	on between	PSO's an	d CO's	
CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

23AU:P01E1

3

Objectives of the	• To understand the concept of nano materials and nano
course	technology.
	• To understand the various types of nano materials and their
	properties.
	• To understand the applications of synthetically important nano materials.
	• To correlate the characteristics of various nano materials synthesized by new technologies.
	 To design synthetic routes for synthetically used new nano materials.
Course Outline	UNIT-I: Introduction of nanomaterials and nanotechnologies,
	Introduction-role of size, classification-0D, 1D, 2D, 3D. Synthesis-
	Bottom –Up, Top–Down, consolidation of Nano powders.Features of
	nanostructures, Background of nanostructures.Techniques of synthesis
	of nanomaterials, Tools of the nanoscience. Applications of
	nanomaterials and technologies.
	UNIT-II: Bonding and structure of the nanomaterials, Predicting the
	Type of Bonding in a Substance crystal structure.Metallic
	nanoparticles, Surfaces of Materials, Nanoparticle Size and
	Properties.Synthesis- Physical and chemical methods - inert gas
	condensation, arc discharge, laser ablation, sol-gel, solvothermal and
	hydrothermal-CVD-types, metallo organic, plasma enhanced, and low-
	pressure CVD. Microwave assisted and electrochemical synthesis.
	UNIT-III: Mechanical properties of materials, theories relevant to mechanical properties. Techniques to study mechanical properties of nanomaterials, adhesion and friction, thermal properties of nanomaterialsNanoparticles: gold and silver, metal oxides: silica, iron oxide and alumina - synthesisandproperties.
	UNIT-IV: Electrical properties, Conductivity and Resistivity, Classification of Materials based on Conductivity, magnetic properties, electronic properties of materials. Classification of magnetic
	phenomena.Semiconductor materials – classification-Ge, Si, GaAs, SiC, GaN, GaP, CdS,PbS. Identification of materials as p and n –type
	semiconductor-Hall effect - quantum and anomalous, Hall voltage - interpretation of charge carrier density. Applications of
	semiconductors: p-n junction as transistors and rectifiers, photovoltaic
	and photogalvanic cell.
	UNIT-V: Nano thin films, nanocomposites. Application of nanoparticles in
	different fields. Core-shellnanoparticles-
	types,synthesis,andproperties.Nanocomposites-metal-,ceramic-
	andpolymer-matrix composites-applications. Characterization– SEM,
	TEM and AFM - principle, instrumentation and applications.

	1
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. C. N. R. Rao, A. Muller and A. K. Cheetham (Eds), The
Text	Chemistry of Nanomaterials: Vol. 1 and 2; Wiley-
IVAL	VCH;Germany, Weinheim, 2004.
	2. C. P. Poole, Jr: and F. J. Owens, Introduction to Nanotechnology;
	Wiley Interscience, New Jersey, 2003.
	3. K. J. Klabunde (Ed), Nanoscale Materials in Chemistry; 2nd Ed.,
	Wiley- Interscience, New York, 2009.4. T. Pradeep, Nano: The Essentials in Understanding Nanoscience
	1 · · · · · · · · · · · · · · · · · · ·
	and Nanotechnology; 1 st Ed., Tata McGraw Hill, New York,
	5. H. Gleiter, Nanostructured Materials: Basic Concepts,
	Microstructure and Properties, Elsevier, Chennai, 2000
	6.Rajendra Kumar Goyal, <i>Nanomaterials and Nanocomposites:</i>
	Synthesis, Properties, Characterization Techniques, and
	Applications, First edition, CRC Press, 2018.
	7. Joseph Koo, <i>Polymer Nanocomposites</i> , First Edition, McGraw-Hill, 2006.
	8. Sati N. Bhattacharya, Musa R. Kamal and Rahul K. Gupta,
	Polymeric Nanocomposites - Theory and Practice Hanser Gardner
	Publications, 2.008.
	9. Guozhong, Nanostructures and Nanomaterials: Synthesis,
	Properties and Applications, Imperial College Press, 2004.
	10. Edited by Vikas Mittal, Synthesis Techniques for Polymer
	Nanocomposites, Wiley-VCH, 2015.
Reference Books	1.AhmetGürses, Introduction to Polymer–Clay Nanocomposites,
	CRC Press, 2016.
	2. T. Tang and P. Sheng (Eds), Nanoscience and Technology, Novel
	Structures and Phenomena; Taylor and Francis, New York, 2003.
	3. R. Booker, E. Boysen, Nanotechnology - The fun and easy way to
	explore the science of matter's smallest particles; Wiley –
	dreamtech, Newdelhi, Reprint 2007.
Website and	1. Home page of Prof. Ned Seeman -
e-learning source	http://seemanlab4.chem.nyu.edu/
	 Nanoletters - http://pubs.acs.org/journals/nalefd/index.html
<u> </u>	3. Nanotation- http://www.acsnanotation.org/
6	Dutcomes (for Mapping with POs and PSOs)
Students will be abl	
-	ethods of fabricating nanostructures.
CDZ: To relate the i	unique properties of nanomaterials to reduce dimensionality of the

CO2: To relate the unique properties of nanomaterials to reduce dimensionality of the material.

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5: To understand the health and safety related to nanomaterial.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	М	S	S	S	S	М
CO2	М	S	S	S	S	М	S	S	S	S
CO3	S	S	М	S	S	S	S	М	S	S
CO4	М	S	S	S	S	М	S	S	S	S
CO5	М	S	М	S	S	М	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

I Semester

Objectives of the	• To understand the influence of rotation and vibrations on the spectra of
course	the polyatomic molecules.
	• To study the principle of Raman spectroscopy, ESR spectroscopy, EPR
	spectroscopy and fragmentation patterns in Mass spectroscopy.
	• To highlight the significance of Franck-Condon principle to interpret
	the selection rule, intensity and types of electronic transitions.
	• To interpret the first and second order NMR spectra in terms of
	splitting and coupling patterns using correlation techniques such as COSY, HETCOR, NOESY.
	• To carry out the structural elucidation of molecules using different spectral techniques.
Course Outline	UNIT-I: Rotational and Raman Spectroscopy: Rotational spectra of
	diatomic and polyatomic molecules. Intensities of rotational spectral lines,
	effect of isotopic substitution. Non-rigid rotators. Classical theory of the
	Raman effect, polarizability as a tensor, polarizability ellipsoids, quantum
	theory of the Raman effect, Pure rotational Raman spectra of linear and
	asymmetric top molecules, Stokes and anti-Stokes lines. Vibrational
	Raman spectra, Raman activity of vibrations, rule of mutual exclusion,
	rotational fine structure-O and S branches.
	UNIT-II: Vibrational Spectroscopy: Vibrations of molecules, harmonic
	and anharmonic oscillators- vibrational energy expression, energy level diagram, selection rules, expression for the energies of spectral lines, computation of intensities, hot bands, effect of isotopic substitution.Diatomic vibrating rotor, vibrational-rotational spectra of diatomic molecules, P, R branches, breakdown of the Born-Oppenheimer approximation.Vibrations of polyatomic molecules – symmetry properties, overtone and combination frequencies. Influence of rotation on vibrational spectra of polyatomic molecule.
	UNIT-III: Electronic spectroscopy: Electronic Spectroscopy: Electronic spectroscopy of diatomic molecules, Frank-Condon principle, dissociation
	and predissociation spectra. $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions and their selection
	rules.Photoelectron Spectroscopy: Basic principles, photoelectron spectra
	of simple molecules, Xray photoelectron spectroscopy (XPS).Lasers:
	Laser action, population inversion, properties of laser radiation, examples
	of simple laser systems.
	UNIT-IV: NMR and ESR spectroscopy: Chemical shift, Factors influencing chemical shifts: electronegativity and electrostatic effects;
	Mechanism of shielding and deshielding. Spin systems: First order and
	second order coupling of AB systems, Simplification of complex spectra.
	Spin-spin interactions: Homonuclear coupling interactions - AX type.
	Vicinal, geminal and long-range coupling-spin decoupling. Nuclear
	Overhauser effect (NOE). ¹³ CNMRand structural correlations, Satellites. Brief introduction to 2D NMR – COSY, NOESY. Introduction to ³¹ P, ¹⁹ F
	NMR. ESR spectroscopy Characteristic features of ESR spectra, line
	shapes and line widths; The g value and the hyperfine coupling parameter (A) origin of hyperfine interaction. Interpretation of ESP spectra and
	(A), origin of hyperfine interaction. Interpretation of ESR spectra and structure elucidation of organic radicals using ESR spectroscopy;
	structure enderdation of organic radicals using ESK spectroscopy;

	zero/non-zero field splitting, Kramer's degeneracy, application to
	transition metal complexes (having one to five unpaired electrons)
	including biological molecules and inorganic free radicals.
Extended	UNIT-V: Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization techniques- Electron ionization (EI), chemical ionization (CI), desorption ionization (FAB/MALDI), electrospray ionization (ESI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass spectrum.EPR spectra of anisotropic systems - anisotropy in g-value, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Principle of Mossbauer spectroscopy: Doppler shift, recoil energy. Isomer shift, quadrupole splitting, magnetic interactions. Applications: Mossbauer spectra of high and low-spin Fe compounds. Structural elucidation of organic compounds by combined spectral techniques.
Professional	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is a	be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular
Text	 Spectroscopy, 4th Ed., Tata McGraw Hill, New Delhi, 2000. R. M. Silverstein and F. X. Webster, Spectroscopic Identification of Organic Compounds, 6th Ed., John Wiley & Sons, New York, 2003. W. Kemp, Applications of Spectroscopy, English Language Book Society, 1987. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, 4th Ed., Tata McGraw-Hill Publishing Company, New Delhi, 1988. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1992. Sharma, Y. R. Structural identification of organic compounds. S. Chand & Co.
Reference Books	 P.W. Atkins and J. de Paula, <i>Physical Chemistry</i>, 7th Ed., Oxford University Press, Oxford, 2002. I. N. Levine, <i>Molecular Spectroscopy</i>, John Wiley & Sons, New
	York, 1974.
	3. A. Rahman, Nuclear Magnetic Resonance-Basic Principles, Springer-Verlag New York 1986
	 Springer-Verlag, New York, 1986. 4. K. Nakamoto, <i>Infrared and Raman Spectra of Inorganic and coordination Compounds</i>, PartB: 5th ed., John Wiley& Sons Inc., New York, 1997.
	 Springer-Verlag, New York, 1986. 4. K. Nakamoto, <i>Infrared and Raman Spectra of Inorganic and coordination Compounds</i>, PartB: 5th ed., John Wiley& Sons Inc., New York, 1997.
Website and	 Springer-Verlag, New York, 1986. 4. K. Nakamoto, <i>Infrared and Raman Spectra of Inorganic and coordination Compounds</i>, PartB: 5th ed., John Wiley& Sons Inc., New York, 1997. 5. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic Resonance</i>; Wiley Interscience, 1994. 1. <u>https://onlinecourses.nptel.ac.in/noc20_cy08/preview</u>
e-learning source	 Springer-Verlag, New York, 1986. 4. K. Nakamoto, <i>Infrared and Raman Spectra of Inorganic and coordination Compounds</i>, PartB: 5th ed., John Wiley& Sons Inc., New York, 1997. 5. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic Resonance</i>; Wiley Interscience, 1994.

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.

CO3: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹P, ¹⁹FNMR.

CO5:To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Core –IV

Objectives of	• To understand the concept of aromaticity in benzenoid, non-benzenoid,
the course	heterocyclic and annulene compounds.
	• To understand the mechanism involved in various types of organic reactions with evidences.
	 To understand the applications of synthetically important reagents.
	 To understand the applications of syntheticarly important reagents. To correlate the reactivity between aliphatic and aromatic compounds.
	 To design synthetic routes for synthetically used organic reactions.
Course	UNIT-I: Elimination and Free Radical Reactions: Mechanisms: E2, E1,
Outline	and E1cB mechanisms. Syn- and anti-eliminations. Hoffmann and Saytzeff
	rules. Reactivity: Effect of substrate, attacking bases, leaving group and
	medium. Stereochemistry of eliminations in acyclic and cyclic systems,
	pyrolytic elimination. Long lived and short-lived radicals – Production of
	radicals by thermal and photochemical reactions, Detection and stability of
	radicals, characteristics of free radical reactions and free radical, reactions
	of radicals; polymerization, addition, halogenations, aromatic substitutions,
	rearrangements. Reactivity: Reactivity on aliphatic, aromatic substrates,
	reactivity in the attacking radical, effect of solvent.
	UNIT-II: Oxidation and Reduction Reactions: Mechanisms: Direct
	electron transfer, hydride transfer, hydrogen transfer, displacement,
	addition-elimination, oxidative and reductive coupling reactions.
	Mechanism of oxidation reactions: Dehydrogenation by quinones, selenium
	dioxides, osmium tetroxide, oxidation of saturated hydrocarbons, alkyl
	groups, alcohols, halides and amines. Reactions involving cleavage of C-C
	bonds - cleavage of double bonds, oxidative decarboxylation, allylic
	oxidation, oxidation by chromium trioxide-pyridine, DMSO-Oxalyl chloride (Swern oxidation) and dimethyl sulphoxide- dicyclohexylcarbodiimide
	(DMSO-DCCD). Mechanism of reduction reactions: Wolff-Kishner,
	Clemmenson, Rosenmund, reduction with Trialkyl and triphenyltin
	hydrides, Homogeneous hydrogenation, Hydroboration with cyclic systems,
	MPV and Bouveault-Blanc reduction.
	UNIT-III: Rearrangements: Rearrangements to electron deficient carbon:
	Pinacol-pinacolone and semi-pinacolone rearrangements -applications and
	stereochemistry, Wagner-Meerwein, Dienone-phenol, Baker-Venkataraman,
	Benzilic acid and Wolff rearrangements.Rearrangements to electron
	deficient nitrogen: Hofmann, Curtius, Schmidt, Lossen, Beckmann and
	abnormal Beckmann rearrangements. Rearrangements to electron deficient
	oxygen: Baeyer-Villiger oxidation and Dakin rearrangements.
	Rearrangements to electron rich atom: Favorskii, Quasi-Favorskii, Stevens,
	[1,2]-Wittig and [2,3]-Wittig rearrangements.Fries and Photo Fries
	rearrangement.Intramolecular rearrangements – Claisen, Cope, oxy-Cope
	Benzidine rearrangements.
	UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a)
	Addition to carbon-carbon multiple bonds- Addition reactions involving
	electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms- Orientation and reactivity hydrogenation of double and triple honds
	Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction addition of oxygen and Nitrogen: (b) Addition to carbon-
	Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbon-

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper) Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours) Skills acquired from this course (To be discussed during the Tutorial hours) Recommended Text I. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001. 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. 3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015. 4. P. Y. Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013. 5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic Chemistry, 7th edn., Pearson Education, 2010.
Component (is a part of internal component only, Not to be included in the external examination question paper)(To be discussed during the Tutorial hours)Skills acquired from this courseKnowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Recommended Text1.J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001.2.E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.3.P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015.4.P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013.5.R.T. Morrison, R.8.N. Boyd, S.K. BhattacharjeeOrganic
a part of internal component only, Not to be included in the external examination question paper) (To be discussed during the Tutorial hours) Skills acquired from this course (To be discussed during the Tutorial hours) Recommended Text I. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001. 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. 3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015. 4. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013. 5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic
internal component only, Not to be included in the external examination question paper) Skills acquired from this course Recommended Text 1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001. 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. 3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015. 4. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013. 5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic
only, Not to be included in the external examination question paper)Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Skills acquired from this courseKnowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Recommended Text1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001.2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015. 4. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013.5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic
included in the external examination question paper) Skills acquired from this course Recommended Text 1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001. 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. 3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015. 4. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013. 5. R. T. Morrison, R.
external examination question paper)Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Skills acquired from this courseKnowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Recommended Text1.J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001.2.E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.3.P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015.4.P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013.5.R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic
examination question paper)Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Skills acquired from this courseKnowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Recommended Text1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001.2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015.4. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013.5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic
paper)Skills acquired from this courseKnowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Recommended Text1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001.2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015.4. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013.5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic
Skills acquired from this courseKnowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.Recommended Text1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001.2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015.4. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013.5. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic
from this courseProfessional Communication and Transferable skills.Recommended Text1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001.2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015.4. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013.5. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic
courseRecommended Text1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001.2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015.4. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013.5. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic
Recommended Text1.J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons. 2001.2.E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.3.P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015.4.P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013.5.R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic
 John-Wiley and Sons. 2001. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013. <u>R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee</u>Organic
 E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013. <u>R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee</u>Organic
 Rinehart and Winston Inc., 1959. 3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers, 2015. 4. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013. 5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic
 Age International Publishers, 2015. 4. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013. 5. <u>R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee</u>Organic
 P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013. <u>R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee</u>Organic
5. <u>R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee</u> Organic
Reference 1. S. H. Pine, Organic Chemistry, 5thedn, McGraw Hill
Books International Edition, 1987.
2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing
House, Bombay, 2000.3. E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
Rinehart and Winston Inc., 1959.
4. Carruther, Jain Coldham, Modern Methods of organic synthesis, IV
Edition.
5. W.Carruthers, Some Modern Methods of Organic
Synthesis,IIIEdition,Cambridge University Press, (1993). Wiley, 2010.Website and1.https://sites.google.com/site/chemistryebookscollection02/home/organic-
Website and1.e-learningchemistry/organic
source 2. <u>https://www.organic-chemistry.org/</u>
Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

- **CO1**: To recall the various mechanisms of rearrangements
- CO2: To understand the mechanism of various types of organic reactions.
- CO3: To predict the suitable reagents for the conversion of selective organic compounds.
- CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5: To design new routes to synthesis organic compounds.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	М	S	S	М	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Core – V		Credit	5
I Year II Semester	PHYSICAL CHEMISTRY-I	Hours/ Week	6

Objectives of the	• To recall the fundamentals of thermodynamics and the
course	composition of partial molar quantities.
	• To understand the classical and statistical approach of the
	functions
	• To compare the significance of Maxwell-Boltzman, Fermi-Dirac
	and Bose-Einstein
	• To correlate the theories of reaction rates for the evaluation of
	thermodynamic parameters.To study the mechanism and kinetics of reactions.
Course Outline	• To study the mechanism and kinetics of reactions. UNIT-I: Classical Thermodynamics: Partial molar properties-
	Chemical potential, Gibb's-Duhem equation-binary and ternary
	systems. Determination of partial molar quantities. Fugacity-
	determination of fugacity bygraphical and equation of state methods-
	dependence of temperature, pressure and composition. Thermodynamics
	of ideal and non-ideal binary mixtures, Duhem - Margulus equation
	applications of ideal and non-ideal mixtures. Activity and activity
	coefficients-standard states -determination-EMF method.
	UNIT-II: Statistical thermodynamics: Introduction of statistical thermodynamicsconcepts of thermodynamic and
	mathematicalprobabilities-distribution of distinguishable and non-
	distinguishable particles. Assemblies, ensembles, canonical particles.
	Maxwell - Boltzmann, Fermi Dirac & Bose-Einstein Statistics-
	comparison and applications.Partition functions-evaluation of
	translational, vibrational and rotational partition functions for
	monoatomic, diatomic and polyatomic ideal gases. Thermodynamic
	functions in terms of partition functions-calculation of equilibrium
	constants. Statistical approach to Thermodynamic properties: pressure, internal energy, entropy, enthalpy, Gibb's function, Helmholtz
	function residual entropy, equilibrium constants and equipartition
	principle. Heat capacity of solids-Einstein and Debye models.
	UNIT-III: Irreversible Thermodynamics: Theories of conservation of
	mass and energy entropy production in open systems by heat, matter
	and current flow, force and flux concepts.Onsager theory-validity and
	verification- Onsager reciprocal relationships. Electro kinetic and
	thermo mechanical effects-Application of irreversible thermodynamics
	to biological systems. UNIT-IV: Kinetics of Reactions: Theories of reactions-effect of
	temperature on reaction rates, collision theory of reaction rates,
	Unimolecular reactions -Lindeman and Christiansen hypothesis-
	molecular beams, collision cross sections, effectiveness of
	collisions,Potential energy surfaces. Transition state theory-evaluation
	of thermodynamicparameters of activation-applications of ARRT to
	reactions between atoms and molecules, Kinetic parameter evaluation.
	Factors determine the reaction rates in solution - primary salt effect and
	secondary salt effect, Homogeneous catalysis- acid- base catalysis- mechanism of acid base catalyzed reactions-Bronsted catalysis law,
	enzyme catalysis-Michelis-Menton catalysis.
	UNIT-V: Kinetics of complex and fast reactions: Kinetics of
	UTALL-V. KINCUCS OF COMPLEX and Tast reactions, KINCUCS OF

Extended Professional Component (is a part of internal component only, Not to be included in the external examination	complex reactions, reversible reactions, chain reactions. Chain reactions-chain length, kinetics of H ₂ – Cl ₂ & H ₂ – Br ₂ reactions (Thermal and Photochemical reactions) - Study of fast reactions- temperature and pressure jump methods - stopped flow flash photolysis methods. Kinetics of polymerization-free radical, cationic, anionic polymerization - Polycondensation. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text Reference Books	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N.Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A.BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi,1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation,Macmillan India Ltd, Reprint - 2011.
Kelefence books	 D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press,1996. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.
Website and	1. https://nptel.ac.in/courses/104/103/104103112/
e-learning source	2. https://bit.ly/3tL3GdN
	Dutcomes (for Mapping with POs and PSOs)
Students will be abl	
CO1: To explain the	e classical and statistical concepts of thermodynamics.
CO2: To compare	and correlate the thermodynamic concepts to study the kinetics of
chemical reactions.	
CO3: To discuss the	e various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures. **CO5**:To compare the theories of reactions rates and fast reactions.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
--	-----	-----	-----	-----	-----	-----	-----	-----	-----	------

CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	M	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	M	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	М	S	М	S	S	M	S	M	S	S
			2	C4more a	- 2 M	dium	 1 Tarr			I

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Core – VI	INORGANIC CHEMISTRY PRACTICAL	Credit	4
I Year II Semester		Hours/ Week	6

Objectives of the	• To understand and enhance the visual observation as an analytical
course	tool for the quantitative estimation of ions.
course	 To recall the principle and theory in preparing standard solutions.
	• To train the students for improving their skill in estimating the
	amount of ion accurately present in the solution
	• To estimate metal ions, present in the given solution accurately
	without using instruments.
	• To determine the amount of ions, present in a binary mixture
	accurately.
Course Outline	UNIT-I: Analysis of mixture of cations: Analysis of a mixture of four
Course Outline	cations containing two common cations and two rare cations. Cations to
	be tested.
	Group-I : W, Tl and Pb.
	Group-II : Se, Te, Mo, Cu, Bi and Cd.
	Group-III : Tl, Ce, Th, Zr, V, Cr, Fe, Ti and U.
	Group-IV : Zn, Ni, Co and Mn.
	Group-V : Ca, Ba and Sr.
	Group-VI : Li and Mg.
	UNIT-II: Preparation of metal complexes: Preparation of inorganic
	complexes:
	a. Preparation of tristhioureacopper(I)sulphate
	b. Preparation of potassium trioxalate chromate(III)
	c. Preparation of tetramminecopper(II) sulphate
	d. Preparation of Reineck's salt
	e. Preparation of hexathioureacopper(I) chloridedihydrate
	f. Preparation of <i>cis</i> -Potassium tri oxalate diaquachromate(III)
	g. Preparation of sodium trioxalatoferrate(III)
	h. Preparation of hexathiourealead(II) nitrate
	UNIT-III: Complexometric Titration:
	1. Estimation of zinc, nickel, magnesium, and calcium.
	2. Estimation of mixture of metal ions-pH control, masking and
	demasking agents.
	3. Determination of calcium and lead in a mixture (pH control).
	4. Determination of manganese in the presence of iron.
	5. Determination of nickel in the presence of iron.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A. JeyaRajendran, Microanalytical Techniques in Chemistry:
Text	Inorganic Qualitative Analysis, United global publishers, 2021.
	2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis;

	 3rded., The National Publishing Company, Chennai, 1974. 3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS, London. Reference Books :
Reference Books	1. G. Pass, and H. Sutcliffe, Practical Inorganic Chemistry; Chapman
	Hall, 1965.
	2. W. G. Palmer, Experimental Inorganic Chemistry; Cambridge
	University Press, 1954.
	3.Basic principles of practical chemistry, V. Venkateswaran, R.
	Veeraswamy and A.R. Kulandaivelu, Sultan Chand & Sons, 2 nd
	edition, 1997.

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able:

CO1: To identify the anions and cations present in a mixture of salts.

CO2: To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.

CO4: To choose the appropriate chemical reagents for the detection of anions and cations. **CO5**:To synthesize coordination compounds in good quality.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	М	S	Μ	S	S	М	S	М	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Elective III		Credit	3
I Year II Semester	GREEN CHEMISTRY	Hours /Week	4
11 Semester			

Objectives of the course	 To discuss the principles of green chemistry, To propose green solutions for chemical energy storage and conversion. To propose green solutions for industrial production of Petroleum and Petrochemicals. To propose solutions for pollution prevention in Industrial chemical and fuel production, Automotive industry and Shipping industries. To propose green solutions for industrial production of Surfactants, Organic and inorganic chemicals.
Course Outline	UNIT-I: Introduction- Need for Green Chemistry. Goals of Green Chemistry. Limitations/ of Green Chemistry. Chemical accidents, terminologies, International green chemistry organizations and Twelve principles of Green Chemistry with examples.
	 UNIT-II: Choice of starting materials, reagents, catalysts and solvents in detail, Green chemistry in day today life. Designing green synthesis-green reagents: dimethyl carbonate. Green solvents: Water,Ionic liquids-criteria, general methods of preparation, effect on organic reaction. Supercritical carbon dioxide- properties, advantages, drawbacks and a few examples of organic reactions in scCO₂. Green synthesis-adipic acid and catechol. UNIT-III: Environmental pollution, Green Catalysis-Acid catalysts, Oxidation catalysts, Basic catalysts, Polymer supported catalysts, Poly supported photosensitizers. UNIT-IV: Phase transfer catalysis in green synthesis-oxidation using hydrogen peroxide, crown ethers-esterification, saponification, anhydride formation, Elimination reaction, Displacement reaction. Applications in organic synthesis. UNIT-V: Micro wave induced green synthesis-Introduction, Instrumentation, Principle and applications. Sonochemistry – Instrumentation, Cavitation theory - Ultra sound assisted green synthesis and Applications.
Extended Professional Component (is a part of internal component only, Not to be included	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
in the external examination question paper) Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry,

Text	Anamalaya Publishers, 2005.
ΙζΑΙ	
	2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of
	Chemical Engineering, 7 th edition, McGraw-Hill,
	NewDelhi,2005.
	3. J. M. Swan and D. St. C. Black, Organometallics in Organic
	Synthesis, Chapman Hall,1974.
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special
	Techniques, Narosa Publishing House, New Delhi,2001.
	5. A. K. De, Environmental Chemistry, New Age Publications,
	2017.
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory
	and Practical, University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker,
	2001
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green
	Chemistry, American Chemical Society, Washington, 2000
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,
	American Chemical Society Washington, 2002.
	5. ChandrakantaBandyopadhyay, An Insight into Green Chemistry,
	Books and Allied (P) Ltd, 2019.
Website and	1. <u>https://www.organic-chemistry.org/</u>
e-learning source	2. <u>https://www.studyorgo.com/summary.php</u>
Course Learning (Dutcomes (for Mapping with POs and PSOs)
C_{1} 1 $($ 111 1 1	

Students will be able:

CO1: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

CO3: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organic synthesis.

CO5: To design and synthesize new organic compounds by green methods.

	0		apping	Cours		nation 1	'iati iaj		
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
S	S	S	S	Μ	S	S	S	S	М
Μ	S	S	S	S	Μ	S	S	S	S
S	S	Μ	S	S	S	S	Μ	S	S
Μ	S	S	S	S	Μ	S	S	S	S
Μ	S	Μ	S	S	Μ	S	Μ	S	S
	S M S M	PO1 PO2 S S M S S S M S M S	PO1 PO2 PO3 S S S M S S S S M M S S M S S M S S	PO1 PO2 PO3 PO4 S S S S M S S S S S M S M S S S M S S S M S S S M S S S	PO1 PO2 PO3 PO4 PO5 S S S S M M S S S S S S M S S M S S S S M S S S S M S S S S M S S S S	PO1 PO2 PO3 PO4 PO5 PO6 S S S S M S M S S S M S S S M S S M S S M S S S M S S S S M M S S S S M	PO1 PO2 PO3 PO4 PO5 PO6 PO7 S S S S M S S M S S S M S S M S S S M S S M S S S S S S S M S S S S S S S M S S S S S S S M S S S S M S	S S S M S S S M S S S M S S S M S S S S M S S S S M S S S M S S M S S S S S M S S M S S S S M S S	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 S S S S M S S S S M S S S S M S S S M S S S S M S S S M S S S S M S S S M S S S S S M S S M S S S S M S S S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's					
CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

II Semester

3

	— 1 11 1 0 1
Objectives of the	• To understand the role of trace elements.
course	• To understand the biological significance of iron, sulpur.
	• To study the toxicity of metals in medicines.
	• To have knowledge on diagnostic agents.
	To discuss on various metalloenzymes properties.
Course Outline	UNIT-I: Essential trace elements: Selective transport and storage of
	metal ions: Ferritin, Transferrin and sidorphores; Sodium and
	potassium transport, Calcium signalling proteins.Metallo enzymes:
	Zinc enzymes-carboxypeptidase and carbonic anhydrase.
	Ironenzymes-catalase, peroxidase. Copperenzymes - superoxide
	dismutase, Plastocyanin, Ceruloplasmin, Tyrosinase.
	UNIT-II: Transport Proteins: Oxygen carriers-Hemoglobin and
	myoglobin - Structure and oxygenation Bohr Effect. Binding of CO,
	NO, CN– to Myoglobin and Hemoglobin.Biological redox system:
	Cytochromes-Classification, cytochrome a, b and c. Cytochrome P-
	450. Non-heme oxygen carriers-Hemerythrin and hemocyanin. Iron-
	sulphur proteins- Rubredoxin and Ferredoxin- Structure and
	classification.
	UNIT-III: Nitrogen fixation-Introduction, types of nitrogen fixing microorganisms. Nitrogenase enzyme - Metal clusters in nitrogenase-
	redox property - Dinitrogen complexes transition metal complexes of
	dinitrogen - nitrogen fixation via nitride formation and reduction of
	dinitrogen to ammonia.
	UNIT-IV: Metals in medicine: Metal Toxicity of Hg, Cd, Zn, Pb, As,
	Sb.Therapeutic Compounds:Vanadium-Based Diabetes Drugs;
	Platinum-Containing Anticancer Agents. Chelation therapy; Cancer
	treatment. Diagnostic Agents: Technetium Imaging Agents;
	Gadolinium MRI Imaging Agents.
	UNIT-V:Enzymes -Introduction and properties -nomenclature and
	classification. Enzyme kinetics, free energy of activation and the
	effects of catalysis. Michelis - Menton equation - Effect of pH,
	temperature on enzyme reactions. Factors contributing to the
	efficiency of enzyme.

E-t-11	Or set is a set of the stars to size from an international stations
Extended Professional	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Williams, D.R. – Introdution to Bioinorganic chemistry.
Text	2. F.M. Fiabre and D.R. Williams– The Principles of Bioinorganic
	Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31
	3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co.,
	USA.
	4. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic
	Chemistry - 1993.
	5. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry,
	S. Chand, 2001.
	6. K. Hussain Reddy, Bioinorganic Chemistry.
Reference Books	1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery
	Publishing House, New Delhi (1996)
	2. M.N. Hughes, 1982, The Inorganic Chemistry of
	Biologicalprocesses, II Edition, Wiley London.
	3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.
	4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.
	5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.
Website and	1. https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry-
e-learning source	the-instant-notes-chemistry-series-d162097454.html
• •••••••••••••••••••••••••••••••••••••	2. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry-
	5th-edition-d161563417.html
Course Learning (Dutcomes (for Mapping with POs and PSOs)
Students will be abl	
	will be able to analyses trace elements.
	be able to explain the biological redox systems.
	gain skill in analyzing the toxicity in metals.
	have experience in diagnosis.
	he nitrogen fixation and photosynthetic mechanism.
	te integen invation und protosynthetie incentarism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	М	S	М	S	S	М	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

PART-B Credit I Year INDUSTRIAL CHEMISTRY AND COMPUTATIONAL Hours/ Week SOFTWARE IN CHEMISTRY II Semester

Objectives of the course	To gain knowledge about industrial fuels.
the course	To understand the importance of leather and water industry.
	To study about small scale industries.
	To impart skills on use of various chemistry tools that are essential for
	any student with chemistry as a major course.
	To learn the techniques of molecular simulations which will enhance the
	students employability in academia and industry.
Course	UNIT-I: Industrial fuels
Outline	Fuels and Energy Resources: Types of fuels - liquid fuels - petroleum products – gaseous fuel - coal gas, producer gas and biogas - Rocket fuels - solid and liquid propellants - nuclear fuels - difference between nuclear and chemical fuels. Renewable sources of energy - solar energy, wind energy and tidal energy.
	UNIT-II: Leather Industry and Water Industry Leather Industry: Curing-preservation and tanning of hides and skins- Process of dehairing and dyeing - Treatment of tannery effluents. Water Industry: Pollution of water by fertilizers, pesticides and industrial wastes -BOD-COD-thermal pollution. Reverse osmosis- softening of hard water.
	UNIT-III: Small Scale Chemical Industries Electro thermal and electrochemical industries: electroplating - surface coating industries - oils, fats and waxes. Match industries and fireworks manufacture of some industrially important chemicals like potassium chlorate- and red phosphorus.
	UNIT-IV: - BASICS Basic idea of Molecular Modelling – A brief introduction about computational methods and their applications in chemistry – Basic terminologies used in computational methods
	Software – List of software used in computational chemistry- Introduction and stepwise approach to Chem draw, Argus lab, Gaussian, Gauss view, Autodoc and Schrödinger software
	UNIT-V: HANDS ON EXERCISES
	Principles of Docking: Docking Protein-protein docking. Glide score Combiglide - Receptor grid generation, reagent preparation, combinatorial screening, combinatorial library enumeration, interactive enumeration and docking. Desmondsystem builder, minimization, molecular dynamics, Hands on Training (Not for examination) The experiments are related to the topics covered in B.Sc - M.Sc Chemistry courses. The students must do the following exercises depending on the availability of time and suitable computational chemistry software.

	 Drawing the structures of organic molecules and reaction schemes using Chemdraw or ACD/Chem sketch. B. For the following experiments, Argus Lab or ACD/Chemsketch or Avogadro Molecular Editor or Gaussian software can be used. Minimum of six experiments are required to be carried out in this section. 1. Geometry optimization and single point energy calculations of simple organic molecules. 2. Calculation of energy gap between HOMO and LUMO in simple molecules and visualization of molecular orbitals. 3. Calculation of dipole moment in polar organic molecules. 4. Calculation of electrostatic charges of atoms in organic molecules using population analysis. 5. Calculation of Resonance energy of aromatic compounds. Prediction of the stability of <i>ortho, meta, para</i> products of nitration of aromatic ring using computational chemistry calculations. 7. Calculation of Restretching frequencies of groups and visualization of normal modes of vibration energy of carboxylic acids. 9. Perform the conformational analysis of butane using potential energy scan. 10. Find the transition state of simple organic reactions and plot the reaction profile. C. Prediction of molecular properties, bioactivity and molecular docking of drug molecules. 1. Calculation of molecular properties and bioactivity of the simple drug molecules. 2. Prediction of molecular properties and bioactivity of the simple drug molecules like aspirin, paracetamol, and the drugs of your choices using the online server molinspiration. 2. Prediction of drug likeliness, ADME and Toxicity of the drug classes like antibiotics, antihistamines, anesthetics and drug molecules of your choices using the online server preADMET or SwissADME or SwissDock.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. Biswas, A. K. (1989). <i>Frontiers in Applied Chemistry</i>. Narosa publishing house. 2. Vermain, O. P & Narula, A. C. (2014). Applied chemistry theory and books. National Publishers.

D 4								
Reference	1. Shreve, R. N., & Brink, J. A. (1977). <i>Chemical Process</i>							
Books	Industries (4th edn.). Tokyo: McGraw Hill.							
	2. Chakrabarty, N. (1981). Industrial Chemistry. New Delhi:							
	Oxford& Publishing Co.							
	3. Singh, P. P., Joseph, T. M., &Dhavale, R. G. (1983). <i>College</i> <i>Industrial Chemistry</i> (4 th edn.).Bombay: Himalaya Publishing							
	House.							
	 Jan H. Jensen, Molecular Modelling Basics, CRC Press, 2010. Waren J. Hehre, Alan J. Shusterman and Janet E. Nelson, The molecular modelling workbook for organic chemistry, Wavefunction Inc., 1998. James B. Foresman and Eleen Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Second Edition, 1996. James B. Foresman and Eleen Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Third Edition, 2015. Donald W. Rogers, Heats of Hydrogenation: Experimental and Computational Hydrogen Thermochemistry of Organic compounds, World scientific Publishing Co, 2006. 							
Website and								
e-learning	1. http://ecoursesonline.iasri.res.in>mod>page							
source								
	2. <u>https://www.neratanning.com>leathertanning</u>							
	3. <u>https://en.wikipedia.org>wiki>Electroplating</u>							
	4. <u>https://www.civilgiant.com>manufacture-of-cement</u>							
	5. https://www.researchgate.net>>Molasses							
	LINKS TO DOWNLOAD SOFTWARE							
	ACD/Chemsketch :							
	https://www.acdlabs.com/resources/freeware/chemsketch/index.php							
	Molinspiration : https://www.molinspiration.com/							
	PreADMET : https://preadmet.bmdrc.kr/ SwissADME : http://www.swissadme.ch/index.php							
	Crystal Explorer: http://crystalexplorer.scb.uwa.edu.au/							
	1-click docking online server: https://mcule.com/							
	Autodock Tools Link: http://mgltools.scripps.edu/downloads							
	AutodockVina Link: http://vina.scripps.edu/							
	Discovery Studio Visualizer: https://www.3dsbiovia.com/products/co							
	Avogadro Molecular Editor : https://avogadro.cc/							
	ArgusLab : http://www.arguslab.com/arguslab.com/ArgusLab.html							
	Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able:							
	CO1 : Students will be able to acquire knowledge of industrial fuels.							
	CO2 : Illustrate the importance of leather and water industries.							
	CO3 : Acquire knowledge about small scale industries.							
	CO4 : Acquire knowledge about chemistry software's .							
	CO5: Acquire knowledge about techniques of molecular simulations							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	М	S	S	S	S	М
CO2	М	S	S	S	S	М	S	S	S	S
CO3	S	S	М	S	S	S	S	Μ	S	S
CO4	М	S	S	S	S	М	S	S	S	S
CO5	М	S	М	S	S	М	S	М	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

SCHEME OF VALUATION FOR ORGANIC PRACTICALS

Semester Examination	Marks (75)
Analysis	30
Estimation	20
preparation	10
Viva - voce	10
Record	05
Total	75

INTERNAL ASSESSMENT	Marks
Attendance /	10
Regularity	
Results /accuracy	15
Total	25

SCHEME OF VALUATION FOR INORGANIC PRACTICALS

Semester Examination	Marks (75)
Analysis of mixture	30
Complexometric titration	20
Preoaration	10
Viva - voce	10
Record	05
Total	75

INTERNAL ASSESSMENT	Marks
Attendance / Regularity	10
Results /accuracy	15
Total	25